
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 15, 177-188 (1980) 

THE LIMITATIONS OF THE PATCH TEST 

F. STUMMEL 
Department of Mathematics, Unioersity of Frankfurt, West Germany 

SUMMARY 

A simple approximation by nonconforming finite elements is presented that passes the patch test of Irons 
and Strang but does not yield approximate solutions converging to the solution of the given boundary value 
problem. It is constructed from continuous piecewise linear functions perturbed by step functions. Further, 
strange convergence properties of such approximations are explained in all details because they may be 
typical for the behaviour of nonconforming finite elements violating the basic precondition for con- 
vergence. 

INTRODUCTION 

The present paper describes an approximation of the solutions of a simple one-dimensional 
boundary value problem by nonconforming finite elements passing the patch test of Irons and 
Strang1-3 but not converging to the solution of the given boundary value problem. Thus, in 
contrast to the opinion of many authors, success in this test is not sufficient for convergence. We 
only remark in passing that neither does this test yield a necessary convergence condition4” as 
may be seen, for instance, from finite elements satisfying the required continuity conditions 
approximately or excepting sufficiently small subsets of nodal points. Our example may be 
generalized in an obvious way to two dimensions: a quadratic domain is subdivided by quadratic 
elements; the associated trial spaces consist of the well-known conforming bilinear functions 
together with nonconforming perturbations by suitable step functions. 

The basic idea of the Irons patch test is that if the mesh is fine and the patches are small the 
solution of the given problem over any patch may well be approximated by a linear function. If 
the patch test is passed, a linear function is approximated exactly so that the approximation 
solutions approximate the solution of the boundary value problem. With respect to this 
conclusion, Irons and Razzaque’ (page 560) state the noteworthy reservation: ‘provided that 
small perturbations from uniform conditions do not cause a disproportionate response in the 
patch’, but continue, ‘we hope to prevent this by insisting that K is positive definite’ (K denotes 
the matrix of the approximating equations). In our example, exactly the apprehended response 
occurs. A linear solution u = p1 of the boundary value problem is reproduced exactly by Uh = p1 
so that uh is a conforming function. The nonconforming nature of the trial spaces disappears in 
this case. It can only make its appearance if the solution u deviates from a linear function. The 
nonconforming part of the trial functions consists of step functions having no continuity 
properties at all and thus causing essential perturbations. Hence the example shows that, 
contrary to the above-cited hope, the positive definiteness does not necessarily prevent the 
patches from a disproportionate response. Note that the introduction to the third section 
continues the discussion of Irons’s original idea. 
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Our example clearly refutes the conception of Irons and Razzaque' (page 560 below) that 
their patch test be applicable to a wide class of nonconforming elements G. Strang has 
conjectured that the test is valid for conventional nonconforming elements (the nodal finite 
elements described in Reference 3). At present this conjecture is unsettled. In view of this 
situation it is important to note that the papers of de Arantes e Oliveira,s Ciarlet6 and Lascaux 
and L e ~ a i n t , ~  in fact do not use this test but prove convergence by deriving appropriate error 
estimates. In References 6 and 7 a so-called local patch test is used whose form, however, 
depends on the special nonconforming element. 

Note that we have e ~ t a b l i s h e d ~ ' ~  a new, generalized patch test which yields a both necessary 
and sufficient convergence condition for approximations by nonconforming elements. It is 
provedg that a series of well-known nonconforming elements pass this test and constitute 
convergent approximations also of boundary value problems with non-smooth coefficients. 

The example is further used in the present paper to illustrate some strange properties" of 
those nonconforming elements which do not pass the generalized patch test or an equivalent 
convergence condition. In particular, the astonishing fact is explained that approximations by 
the spaces V,, converge but not to the desired solution of the given problem. This phenomenon 
occurs in general, for example, when sequences of subspaces are generated by successive 
subdivisions of a mesh. Increasing sequences of subspaces always converge, possibly however to 
too great a limit. The purpose of the third and fourth sections is to explain such strange 
properties in all details. In particular, it will be proved that the limits of convergent sequences of 
approximation solutions in Vh are again solutions of a variational equation. These solutions are, 
in general, different from the solution of the given problem. This defect cannot be remedied by 
modifying the inhomogeneous term or load vector, except that the solution to be approximated 
is known. Finally it is shown that the usual form of the inhomogeneous term leads to 
approximations asymptotically overestimating the strain energy of the given problem. Presum- 
ably, approximations by the subspaces Wh do not possess the above-described convergence 
behaviour due to the fact that the subspaces [WZ, wS, . . . , w ~ ~ - I ]  do not approximate L2(I ) .  

The author thanks Ivo BabuSka, the Humboldt awardee temporarily at the University of 
Frankfurt, for his stimulating interest in the subject and G. Strang for valuable comments which 
led to a significant improvement of the presentation of the example. 

THE BOUNDARY VALUE PROBLEM AND NONCONFORMING 
APPROXIMATIONS 

Consider the Dirichlet boundary value problem 

d2u 
-- dX2 + u =f in I, ~ ( a )  = a, u ( b )  = p 

for real-valued inhomogeneous terms f~ L2(I) ,  solutions u E H 2 ( I ) ,  and some bounded open 
interval Z = (a, b )  of the real line. In the following, g denotes the linear interpolate of the 
boundary values a at x = a and p at x = b. Problem (1) is equivalent to the variational equation 

u - g E &(I); ( D q D u  + qu) dx = qf dx, Q E HA(I) 

where DQ denotes the derivative dq/dx of functions q ~ H ' ( 1 ) .  The above problem is 
approximated by means of subdivisions of the interval I into rn equidistant open subintervals 
1; = (xi-l, x i )  of length h. The subdivisions and the points xi = a +jh  depend on rn or th: mesh 
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width 

b - a  
h = h  =- , m = 1,2, ... m 

m 

The variational equation (2) is approximated by a sequence of variational equations of the 
form 

m 

Uh-gE vh; j - 1  c [ Ii (DVhDUh+WJh)dX=[ I Vhfdx, ( P h E  vh (3) 

for all mesh widths h = hm. The spaces Vh are finite dimensional and consist of piecewise linear 
functions. Let uj be the well-known continuous piecewise linear roof functions specified by the 
property 

uj (xk)  = ajk, j ,  k = 0, . . . , m 

Next let wj be the step functions 

w j ( x )  = 1, xi-1 < x  <xi; w j ( x )  = 0, elsewhere; 

for j = 1,. . , , m. Then Vh is the linear subspace of L2(1) spanned by u l , .  . . , and 
W 2 9 . .  . 9 Wm-13 

vh = [ u l , .  . . 9 Om-lr w29.. . 1 wm-11 

Every function cp E Vh has the representation 

The first sum on the right-hand side is the conforming, continuous part c p l  E HA(I) and the 
second sum the nonconforming, discontinuous part cpo E L 2 ( I )  of cp. Obviously, the coefficients 
yj ,  zi of this representation are the nodal values 

of c p ' ,  c p o .  Note that the trial functions cp E v h  jump at the mesh points x i :  

q ( x j  + 0) - cp(xi - 0) = cpo(xj + 0) - qo(x j  - 0) = zi+l - zi, j = I, . . . , m - I, (6) 
where z 1  = zm = 0. 

(PE vh by 
The method of nonconforming finite elements defines the derivative Dcp of a trial function 

Thus the derivative of the step function cpo vanishes so that we have 

D ~ ~ = D ~ ,  D ~ O = O ,  c p = c p l + c p o ~ ~ h  

The conforming part cp and the nonconforming part cpo may, therefore, be obtained by 
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In the present context, convergence of the method of nonconforming finite elements may be 
viewed as convergence in the space L’.’(I) of all vector-valued functions u = (u ,  u ’ )  with 
components u, u’ E L’(1). This is a Hilbert space with the scalar product 

(u, v) = ( u ‘ v ’ +  uv )  dx, u, v E L’*’(1) 

The natural embedding of functions u E H ” ( I )  into the space L’*’(I) is obtained by u = (u, Du). 
The associated natural embedding of the Sobolev spaces H”(Z) into L”*(1) will be denoted by 
EHm(I ) .  In a similar way, the natural embeddings E v h  of the trial spaces v h  of piecewise linear 
functions into L1*’(l) are defined by 

JI 

U h = ( u h , u ~ ) , u ; , ( X ) = D u h ( X ) ,  X E I j ,  i=1,  . . . ,  m 
Using these concepts, one has 

llUh -Ill[* = f I ( ( D U h  - D U I 2 + 1 U h  -U1’) dx 
i=1 I,  

Consequently, the sequence of solutions u h  E v h  of ( 3 )  converges to the solution u E HA(G) of 
(l), (2) in the sense of the method of nonconforming finite elements if, and only if, the associated 
sequence of embedded functions uh converges to u in L1*’(l). 

On setting 

&=.&:(I), E h = E v h ,  h=h,, m = l , 2  , . . .  
the variational equations (2), (3) take on the simple form 

u-gEEo;  (cp,u)=~(cp), c p E E o  (84 

and 

u h  -ge E h ;  (Qh, U h )  = I ( Q h ) ,  Qh E E h  (8b) 

where u is the embedded solution u of (l), (2) and the right-hand side of these equations is 
defined by 

SUCCESS IN THE PATCH TEST AND DIVERGENCE OF THE APPROXIMATION 
SOLUTIONS 

Does the sequence of solutions u h  converge to the solution u for h + O? This question will be 
answered by studying the associated discretization error. Let P h  be the orthogonal projection of 
L’”(1) on to the subspace E h  = E v h  and let Iv, Ehl be the shortest distance from v to Eh. Using 
the solution u of @a), the associated error functional d is defined by 

d(Q)  = l (Q)  - (CP,  U), Cp E L’”(1) (10) 
Obviously, ((Ph, v )  = ( q h ,  p h v )  for all Q h  E E h .  By virtue of the variational equations (8b), the 
norm of the error functional d on Eh can be written in the form 
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where v = u - g ,  v h  = u h  - g .  The function v h  -Phv is orthogonal to the subspace Eh. Pythagoras’s 
theorem thus yields the fundamental discretization error equation 

(11) b h  --[I2 = b-g, ~ h ~ 2 + ~ ~ ~ ~ ~ &  

for the solutions u h  of the approximating variational equations (8b). 
The solution u of (11, (2) belongs to Hz(Z) n H:(I)  and can, therefore, be approximated by 

piecewise linear functions. Using the formulae (4), ( 5 ) ,  (7) for Q = u -g, one obtains the 
coefficients y j .  z j  of a piecewise linear interpolate Q; E v h .  As u - g  is continuous, we have 
Q’ = Q, cp = 0 so that yj = cp(xj>, zj  = 0. Consequently, 0 

m-1 

Q L ( x )  = C cp(xj)nj(x), x E [a, bI 
j=1  

is the continuous piecewise linear interpolate of u - g  at the mesh points xi. The well-known 
associated error estimate thus yields the approximability condition 

lu-g, Ehl Ilu-g-q$ls ‘Yhlul2 (12) 

uniformly for all h = h,, rn = 1,2,. . . . 
The Irons patch test considers the case that the solution u is a linear function p l .  Such a 

function solves the boundary value problem (1) for f = pl ,  a = p l ( a ) ,  p = p l ( b ) .  Correspond- 
ingly, we have g = pl. Then the test is to see whether the associated nonconforming approxima- 
tions u h  are identical with pl. In view of (1 l ) ,  the error of these approximations is 

b h  -PI11 = IldllEi, 

because u -g  = p1 - p l  = 0 and 10, Ehl = 0. Hence the two statements 

u h  =PI (134 

d ((Ph ; PI) = 0, (Ph E Eh (13b) 

and 

are equivalent. Evidently, it suffices to verify the second statement for all basis functions in Eh. 

Since the conforming basis functions v j  E Eh nEo give d(v i ;  u) = 0, as is readily seen from (8a), 
(lo), the two statements above are further equivalent to 

d(wj;p,)=O (13~) 

for all nonconforming basis functions wj in Eh. 
This is the patch test of Strang2 and Strang and Fix3 (page 176) in our notation. Note that the 

formulation of the patch test by Brown’’ (page 75) and Ciarlet12 (page 223) is the same as (13b). 
By partial integration the error functional d becomes 
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because u satisfies the differential equation (l), the trial functions (Ph vanish at x = a and x = b, 
and make the jumps (6) at xi. The nonconforming basis functions thus yield 

d(wj ;  u) = D U ( X ~ - ~ )  -Du(xj), j = 2, . . . , m - 1 

Every polynomial u = p1 of first degree has a constant derivative Du so that 

d(wj;pl)=O, 

and, consequently, the patch test is passed. 

problem (l), (2), as will now be shown. From (14) it follows that 

j = 2 , .  . . , m -1 

But, the sequence of solutions U h  of (3) does not converge to the solutions u of the given 

m-1 

d(4&,; U) = - h  Z j U " ( z j ) ,  (Ph E Eh 
j = 2  

using the mean values 

u"(Zj) = - D u dx, j = 1, . . . , m : ", 
The coefficients zi are uniquely determined by the representation (4) of ( ~ h .  Choosing the special 
sequence of step functions 

m-1 

(Ph(x) = 1 u(xj)wj(x), x E [a, 61 
j=2  

where u = u -g, it follows that 
m-1 

j = 2  
d ( 9 ,  ; U) = - h 1 ~ ( x j ) ~ " ( I j )  

since u" = D2u = D2u. Obviously, 

It is well known that the sequence ((Ph) converges to u in L2(1) for h + 0. The derivative (P; of (Ph, 

in the sense of nonconforming finite elements, is equal to zero. Hence 

q h  = ((Phr (Pi) (0, 0 )  in L1'2(1) 

and so 

Consequently, one has 

The discretization error equation (1 1) then implies the statement 

lim inf I(uh - 1111 = lim inf lldllEL 2 - 
h-0 h-O 



LIMITATIONS OF THE PATCH TEST 183 

for each solution u E H2(Z) n H h ( Z )  such that u = u - g # 0. Thence it is seen that u h  cannot 
converge to u in general. 

The generalized patch requires here 
m-1 

lim $(x i  j ( p h ( X i  + 0) - cph (x i  - 0)) = 0 
h-0 j = l  

for all test functions 9 E C? (R”) and every bounded sequence of functions (Ph E vh. This 
condition is not valid in the present example as is proved in just the same way as above. 

A DIVERGENT FINITE ELEMENT PASSING THE TEST 

This section deals with a sequence of subspaces Wh c vh defined by finite elements in the sense 
of the general definition by Ciarlet.” Due to the discontinuities of the trial functions, the 
degrees-of-freedom have the form of left- and right-sided limits of function values and of jumps 
at discontinuities. 

The idea of Irons’s patch test has already been described in the Introduction. Consider now 
fine subdivisions of the interval Z. For the spaces wh each subinterval of the form [xgk ,  x3,] for 
k C I is a patch of elements. To any solution u of (1) choose a small patch length such that u can 
be approximated within a prescribed accuracy by a linear function in each patch of this length. 
The interval I may, obviously, be covered by overlapping patches. For all sufficiently small mesh 
widths h our element passes the test: a state of constant strain on a patch is exactly reproduced 
by the nonconfurming approximation. Irons and Razzaque’ (page 559) claim the following: if 
two overlapping patches can reproduce any given state of constant strain they should combine 
into a larger successful patch. If this were true the whole interval Z would be successful, i.e. 
would yield convergent approximations. As we shall see, however, the solutions u h  of the 
approximating equations for wh do not converge to the solution u of (1). In this way, a 
contradiction to the above hypothesis of Irons and Razzaque is established. 

The finite elements in this section are closed intervals K = [xo, x3] of length 3h and the 
associated space of real functions is the span 

M = ruo, u1, 02,  U3r w21 

Functions in this space have the form 
3 

x(x)=  1 Y j V j ( X )  tzzwz(x) ,  x o s x  s x 3  
j = O  

(Figure 1). Obviously, the coefficients of the representation are the degrees-of-freedom 

Y o  = X ( x o  + 01, Y I = X ( x i  - o), Yz ‘ X b z  01, Y 3  = X ( x 3  -01, 

2 2  = x ( x *  + 0) -x(x1- 0) = - cy(x2 + 0) - x ( x 2  - 0)) 

of the function x. Tne right-hand sides of these equations specify linearly independent linear 
forms over M. They are defined as well over the space of continuous functions on [xo, xj]. The 
functions uo, . . . , u3,  w2 constitute a basis of M, biorthogonal to these linear forms. Thus we 
have a finite element in the sense of the general definition by Ciarlet” (page 78). 

This element yields nonconforming approximations of the type considered above for our 
boundary value problem. The approximations are specified on the whole interval Z by the 
su bspaces 

wh = [ U l , .  . . 9 U3n-1, w21 W S , .  * .  9 W 3 n - I I c  v h  



184 F. STUMMEL 

I I 

Yo Y* 

I 

Yr I 

. .  
I I 

I I I 
I 

I 
I 

I I I I 

X 3 KO x 4  

Figure 1 .  The nonconforming finite element passing the patch test 

for all mesh widths h = h3,,, n = 1,2 ,  . . . . The trial functions in Wh have the form 
3 n - 1  n 

$ ( X I =  c y jc j (x )+  Z 3 k - I W 3 k - l ( X ) ,  x E [a, 61 (15) 
j=l  k = l  

Note that these functions satisfy the homogeneous boundary conditions +(a)  = +(b)  = 0. Now 
yi, ~ 3 k - 1  are the degrees-of-freedom 

~ 3 k = $ ( X 3 k + O ) = ( 1 ( X 3 k - O ) ,  k = l ,  . . . ,  n - 1  

y 3 k - Z = $ ( X 3 k - 2 - 0 ) ,  Y 3 k - 1  = 4 ( X ? . k - - l + O )  

Z 3 k - 1  = G ( X 3 k - 2  -k O ) - $ ( x 3 k - 2 - 0 )  = - ( $ ( X 3 k - l +  O ) - $ ( X 3 k - l  + 0)) (16) 

for k = 1 , .  . . , n. 
The approximating equations for this class of nonconforming elements again have the form 

(3) for 3n and Wh, instead of rn and Vh, or the form (8) where Eo = &:(I) and Eh = EWh for 
h = h3,,. n = 1,2 ,  . . . . The associated discretization error equation is found in (11). The 
approximability condition 

Iu - g, E Wh I -* 0 ( h  + 0) 

is proved just as in the previous section. Using (14), the error functional d on the subspaces Wh 
reads 

n 

d($h; U)= Z ~ ~ - ~ { D U ( X ~ ~ - Z ) - D U ( X ~ ~ - I ) } ,  +h E wh (17) 
k = l  

Hence the nonconforming basis functions W 3 k - 1  in Wh pass the patch test (13), 

d ( ~ 3 k - l ; ~ I ) = O ,  k = l ,  . . . ,  n 
However, the approximation solutions in wh do not converge to the solution u of (l), either. 

To see this, put u = u - g and choose the special sequence of trial functions 
n 

& = l  
+ h ( x ) =  u ( x 3 k - 3 / 2 ) W 3 & - 1 ( x )  

By virtue of (1  7), we now have 
n 

d($h ; u) = - h c U ( X 3 k - 3 / 2 ) U " ( ~ 3 k - l )  
k = l  
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since u” = D2u = D2u. For brevity, denote uuff by w. Then 

and 

for h + 0. This implies the convergence of 

Further 

3 l+h,(x)I2 dx = 3h i Iu(xz1-312)1~+1 bI2 dx = b113 

for h + 0, because the sums are composite midpoint rules to the mesh widths 3h approximating 
the integral of 1uI2 over the interval [a, b]. As $L = D+,, = 0 it follows that 

I k = l  

and thus 

provided that u = u - g  # 0. By virtue of the error equation (1 l),  this relation shows the 
divergence of the nonconforming approximations in wh. 

STRANGE PROPERTIES 

The example exhibits some strange properties that may occur in approximations by noncon- 
forming finite elements which do not pass the generalized patch test or some equivalent 
convergence condition. From now on we consider only homogeneous boundary conditions in 
(l), i.e. a = p = 0 and thus g = 0 in the generalized boundary value problems (2), (3) and (8). 
First, let us again regard the approximating variational equations ( 3 )  or (8). The spaces Eh = EVh 
are not contained in Eo = €H;(Z). Therefore, strictly speaking, the inhomogeneous term of the 
given variational equation has first to be expanded in the form (9) on to all of L’”(Z) and then, in 
equations (3) or (8), to be restricted to the subspaces Eh. This process is, however, not unique. 
For, the general form of continuous linear forms on L’a2(Z) reads 

[ ( C P )  = J (cp’fl+ cpfd dx, cp = (a cp’) E L ’ ~ V ) .  
I 

As one easily sees, this linear form possesses the representation 

I(v) = I vf dx, v E (0, 
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if, and only if, the condition 

~IEH’U), -Dfi+fo=f, 

holds. In the following we shall use the extended form (18) as inhomogeneous term in the 
variational equation (8). The original form can always be regained by choosing fo = f, f l  = 0. 

A particularly remarkable property of nonconforming approximations is the fact that the 
approximation solutions may converge but not to the desired solution of the given problem. 
More precisely, we shall show that the solutions u h  E E h  of the variational equations under 
consideration, 

m f I (D(P D u h  + (P&) dx = 1 (D(Pf1 + d o )  dx, (P E Vhr (20) 
i=1 I, j =  1 

converge to the solution z = (2, 2 ’ )  of the variational equation 

for all fo, f l  E L2(Z). The subspace L = LIe2(Z) is defined by 

L = &;(I) +L2(1)x[O] (22) 

where by L2(1)x[O] is meant the subspace of all functions w E L’.’(Z) of the form w = (w,  0) for 
w E L’(I). Every element in L has the form 

V + W , V = ( V , D U ) E E H A ( I ) ,  W = ( w , 0 ) E L 2 ( l ) X [ O ]  

Problem (21) has a unique solution z in L that wili be determined explictly in the next section. 

Theorem. The subspaces E h  are contained in L and u h  is the orthogonal projection of z on to 
E h  = E v h  in L’W. The sequence of solutions uh = ( U h ,  u i )  of the variational equations (20) 
converges to the solution z = (z ,  2‘) of the variational equation (21) for all inhomogeneous terms 
with arbitrary fo, fl  E L2(1). 

Proof: (i) Every trial function (Ph E v h  has the representation (Ph = cpA +pi, where cpi is the 
conforming and (P: the nonconforming part of (Ph, as defined in (7). The embedded trial 

L2(I)x[O]  because D(P; = 0. Consequently, the subspaces E h  are contained in L. From (20), (21) 
it then follows that u h  is the orthogonal projection of z on to the subspace Eh of L1’2(1) and so 

functions Q h  E E h  = E V ~  thus have the form (Ph =cp;+cp: .  Evidently, &:(I) and cpEE 

l IZ-uhl l=  IZ, E h l  = min l l z - (ph( l  
Q h e E h  

(ii) Now z = v +  w, where V E  &:(I), w E L’(I)x[O] or v E Hh(I), w E L2(1). The conforming 
piecewise linear functions qL in v h  approximate H ~ ( z )  and the nonconforming step functions 
cp: in v h  approximate L2(I) .  Hence there exist such sequences of functions with the property 

(PA + u in HA(I), (P: + w in L 2 ( I ) ( h  --* 0) 

The embedded sequences Q; = ((P;, Dq A), Q: = ((P:, 0) then converge to v, w in L’.’(I) for h + 0. 
Using the above error equation, it thus follows that 

h - u h l l  Ilv+w-(cp:+~oh)ll IIv - ( P i l l 1  +Ilw -(P:llO+ 0 
for h+0. 0 
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CONVERGENCE BEHAVIOUR OF APPROXIMATING STRAIN ENERGIES 

It has been shown in the preceding section that the sdutions u h  of the approximating variational 
equations (20) converge to the solution z of (2 1). Correspondingly, the energy approximations 
Iluhl12 converge to 11~112, i.e. 

~(lu;l’+luhl’)dx- ~I(1z‘12+1z12)dx (h+O)  

It is possible, in this example, to establish an explicit representation of z and its norm llzll by the 
given data fo,fl. For brevity, we write fl(I) for the mean value of f l  over the interval I. The 
solution z of (21) has the form 

= (fo, fl  -fl(m (23) 
and the associated norm has the representation 

Obviously, this function z is a solution of the variational equation (21) if j I  cp’ dx = 0 for all 
cp = (cp, cp ’ )  EL. Now, by definition of L, we have cp = x+ +, where x E .&:(I), JIG L2(I)x[O]. So 
cp’ = DX for some function ,y E HA(I) and hence 

I I c p ‘  dx = , y ( b ) - x ( a )  = 0 

It has further to be verified that z belongs to LChoose 

u ( x ) =  jx(fl(t)-f1(I))df9 v‘(x)=fi(x)-fl(l) 

w(x)=fo(x)-u(x), w ’ ( x ) = O ,  x € [ a ,  bl 

w = (w, 0) E L2(I)x[0]  

Then u E HA(I) and 

v = (v ,  u ’ )  E &(I), 
Consequently, 

z=(fo,fl-fl(I))=(u+W, u’)=v+w. 
From the above representation it is seen that the solution z is equal to the embedded solution 

u =  (u, Du) of (l), (2) for g = 0 if, and only if, 

f o = u , f i = D ~ + f i ( O  (25) 

In this case, condition (19) is fulfilled because u is a solution of the differential equation 
- D’u + u = f. Zy partial integration and summation, the inhomogeneous term in the approxi- 
mating variational equations (20) becomes 

m-1 

I(q)=[ d d x -  1 (Du)(xi)(cp(xi+O)-cp(xi-o)), P E  v h  
I j =  1 

By virtue of (6),  the sum over the constant term fl(Z) is equal to zero. Thus there exists a 
correction term for the right-hand side J cpf dx guaranteeing the convergence of the sequence 
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(uh) to the solution u. However, this correction makes use of the solution u and so is not 
available in practice. 

Usually, the inhomogeneous terms of the variational equations (20), (21) are defined by 

f o = f , f 1  = o  (26) 

More generally, also fo, fl are admissible which satisfy condition (19). The space EHA(Z) is a 
subspace of the space L = EHA(I) + L2(Z)x[O] containing the limit z. From the variational 
equations (2), for g = 0, and (21) it follows that the difference z - u is orthogonal to the subspace 
&:(I) in LlV2(Z). Hence u is the orthogonal projection of z into &;(I) and 

11z11’ - llU1l2 = llz - u11’ = Iz, am2 (27) 

Using this equation, one finally obtains the following statement concerning the asymptotic 
behaviour of the approximations lluhl? to the strain energy llu11’: 

lim IIuhII’ = M2> IM2 

for all f o ,  fl satisfying condition (19) but excepting the special case (25). This shows that the 
approximating strain energies lluh 11’ asymptotically overestimate the strain energy (IuI(’ of the 
solution u of the given problem (1). 

h -0 
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